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MATHEMATICAL MODELING OF TWO-PHASE

CONVECTIVE FLOWS WITH FINE PARTICLES

UDC 532.529.5I. M. Vasenin, N. N. D’yachenko, K. E. Elkin,

and R. K. Narimanov

A two-phase convective flow with convection caused by a nonuniform distribution of solid particles is
considered. The use of the mathematical model proposed is illustrated by an example of a two-phase
flow in a shutter sedimentation reservoir.
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Introduction. In the present study, we model a two-phase flow whose dispersion phase is a rarefied “cloud”
of fine solid particles. The term “fine particles” is used for particles whose velocity-stabilization (or relaxation)
time during the free fall of particles in the liquid of interest is negligibly short compared to the characteristic
sedimentation time of such particles in the computational domain.

We write the gravitational sedimentation time of a small solid particle as

dus

dt
=
CR

m
(u− us) + g

(
1− ρ0

l

ρ0
s

)
, (1)

where us and ρ0
s are the velocity and density of the particle, u and ρ0

l are the velocity and density of the liquid,
t is the time, m is the particle mass, and CR is the drag coefficient of the particle. The drag CR is generally a
variable quantity: CR = CDρ

0
l s|u−us|/2, where CD = CD(Re) is the drag coefficient that depends on the Reynolds

number, s is the mid-section area of the particle, and Re is the Reynolds number.
We introduce the following notation: relaxation time τ = m/CR and buoyancy force F = g(1− ρ0

l /ρ
0
s). In

the adopted notation, Eq. (1) acquires the form

dus
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+

1
τ

us =
1
τ

u + F .

From here, the sought function can be expressed analytically as
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(
−

t∫
0
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τ

)[
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t∫
0
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)

exp
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]
.

We integrate this expression by parts and obtain the following asymptotic expansion with respect to τ . We
restrict ourselves to second-order terms with respect to τ and obtain

us = u + τF − τ
du

dt
+ exp

(
−

t∫
0

dt

τ

)[
us0 − (u + τF )0 + τ

du

dt

∣∣∣
0

+ θ(τ2)
]

+ θ(τ2). (2)

The approximate approaches in which the relaxation time of particles is assumed to be short are presently
used in mathematical models of deep convection intended for local weather forecast. The system of deep convection
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equations was first proposed by Ogura and Phillips [1]. These authors, and also subsequent authors who used these
equations (see [2–4]) did not discuss the applicability limits of this model. Meanwhile, two-phase flows contaminated
by fine particles are widely used in many applications. Therefore, it makes sense to consider the class of convective
flows with fine particles individually and discuss simplifications and assumptions that can be used to formulate
adequate mathematical models.

Mathematical Model for Two-Phase Convection. Let us turn to constructing the model. Note that
the derivative with respect to time in formula (2) is taken along the particle trajectory, i.e., du/dt = ∂u/∂t+us∇u.
Next, we assume that the relaxation time τ is sufficiently short, and the terms of second-order smallness with respect
to τ in (2) can be omitted. After the relaxation time, we may also neglect the influence of initial conditions. After
some simple manipulations with the remaining terms in (2) we obtain

m
(∂u

∂t
+ [u + (us − u)] · ∇u

)
≈ 1

2
CD(Re)sg|u− us|(u− us) +mg

(
1− ρ0

l

ρ0
s

)
.

It can be easily seen that, for a given flow-velocity field, one can find all projections of the particle-velocity lag
vector (u− us) by solving a system of algebraic equations.

To simplify the consideration, we assume that the two-phase convective flow is an incompressible laminar
flow, two-dimensional in the plane (x, z) with velocities u = (u, v) and us = (us, vs). We direct the z axis upward in
the direction opposite to the gravity force. With the adopted assumptions, we write the projections of the equation
of motion for the two-phase mixture onto the x and z axes:

ρl

(∂u
∂t

+ u · ∇u
)

+ ρs

(∂us

∂t
+ us · ∇us

)
+
∂p

∂x
= µ∆u,

ρl

(∂v
∂t

+ u · ∇v
)

+ ρs

(∂vs

∂t
+ us · ∇vs

)
+
∂p

∂z
= µ∆v − g(ρl + ρs).

(3)

Here, ρl = ρ0
l (1− ρs/ρ

0
s) is the mass of the liquid in a unit volume, ρs is the mass of the particles in a unit volume,

p is the pressure, and µ is the viscosity of the liquid.
We introduce new variables δus = us − u and δvs = vs − v, and also the vector w = (δus, δvs). Next, we

rewrite system (3) in terms of the new variables:
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)
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(4)

Assuming that

ū =
u

V
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L
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,

where L is the length scale, V is the velocity scale, and δV is the particle-velocity lag scale, we nondimensionalize
Eq. (4) to obtain(∂ū
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(5)
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Here Re = (ρl + ρs)V L/µ is the Reynolds number and Fr = V 2/(gL) is the Froude number. It is seen from Eq. (5)
that, in the region with high Reynolds numbers, provided that the inequality

ρ̄s

ρ̄l + ρ̄s

δV

V
� 1 (6)

holds, we can neglect the second terms compared to the first ones in the left side of these equations and solve the
system

∂ū

∂t
+ ū · ∇ū+

1
ρ̄l + ρ̄s

∂p̄

∂x̄
=

1
Re

∆ū,

∂v̄
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+ ū · ∇v̄ +

1
ρ̄l + ρ̄s

∂p̄

∂z̄
=

1
Re

∆v̄ − 1
Fr
.

(7)

Near the solid boundaries, by virtue of the no-slip condition for the liquid, the flow velocity tends to zero
together with the inertial terms. At the same time, the particles keep falling under the action of the gravity force.
Hence, the corrections to the inertial terms in Eqs. (5) near the solid walls may become comparable with, or even
larger than, the first terms because of the presence of terms of the form w̄s ·∇ū and w̄s ·∇v̄. The same situation may
also arise in the case of low-Reynolds-number flows typical of various sedimentation reservoirs and waste-disposal
plants.

In the indicated cases, viscous forces start playing the decisive role in liquid motion. Various terms in Eqs. (5)
should, therefore, be evaluated in comparison with viscous terms. It is easily seen that the omitted terms in the
range of low Reynolds numbers are small if the following inequality is valid:

ρ̄s

ρ̄l + ρ̄s

δV

V
� 1

Re
=

µ

(ρl + ρs)LV
. (8)

If inequalities (6) and (8) are both fulfilled, Eqs. (7) can be used everywhere in the flow region. If the length
scale in (8) is chosen to be the distance L over which Re = 1 in the vicinity of the solid boundary, then the two
inequalities coincide in form. Yet, these inequalities differ in their meaning and are valid for different scales. The
parameters V and L in inequality (6) refer to the flow region with high Reynolds numbers, whereas inequality (8)
contains scales that characterize the flow region with low Reynolds numbers.

In the case of a low-velocity Stokes flow, the inertial terms in Eqs. (7) can be neglected everywhere in the
computational domain; hence, if Re � 1, we can confine ourselves to solving the simple system

∂ū

∂t
+

1
ρ̄l + ρ̄s

∂p̄

∂x̄
=

1
Re

∆ū,

∂v̄

∂t
+

1
ρ̄l + ρ̄s

∂p̄

∂z̄
=

1
Re

∆v̄ − 1
Fr
.

To conclude the present consideration, note that system (7) can be used to predict equilibrium (without
particle-velocity lag) convection of a two-phase mixture resulting from the different action of the gravity force upon
elements having different total local densities ρl + ρs.

Thus, under conditions (6) and (8), free convection of a two-phase mixture consisting of fine particles and
an incompressible liquid can be predicted by the following system of equations:

div u = 0,
∂ρs

∂t
+ us · ∇ρs + ρs div us = 0, (ρl + ρs)

(∂u
∂t

+ u · ∇u
)

+
∂p

∂x
= µ∆u,

(ρl + ρs)
(∂v
∂t

+ u · ∇v
)

+
∂p

∂z
= µ∆v − g(ρl + ρs), us = u− τ

du

dt
, vs = v − τ

[dv
dt
− g

(
1− ρ0

l

ρ0
s

)]
.

(9)

In the case where inequalities (6) and (8) are fulfilled because of the low mass concentration ρs of particles,
further simplifications in Eqs. (9) are possible.

System (9) resembles the deep convection equations in terms of the effect of particles on convection of the
two-phase mixture [1–4]. Yet, in contrast to the latter equations, this system is substantiated with allowance for
inequalities (6) and (8) for arbitrary Reynolds numbers.

790



Fig. 1. Schematic representation of the sedimentation cell.

Practical Application of the Model. As an example, we consider sedimentation of coal-slack particles
in a shutter sedimentation reservoir [5]. The sedimentation cell is schematically shown in Fig. 1. The cell is shaped
as a parallelogram 1 m high and 0.1 m wide; the angle of inclination of the plates is 60◦. The cell has an inlet
channel 0.1 m high at the bottom on the left side and with an outlet channel of the same size at the top on the
right side. Water moves upward along the shutter plates. The particle size ranges from 2 to 60 µm, and the particle
concentration varies from 0.2 to 5 kg/m3. Sedimentation of particles proceeds over the entire height of the shutters;
heavy and light particles undergo sedimentation in the bottom part of the cell and in the top part, respectively.
According to experimental data, the Reynolds number for the flow around the particles is Re ≈ 1. Hence, the drag
of the liquid to the particle flow obeys the Stokes law.

Let us estimate the relaxation time for coal particles in water. In the case of the Stokes drag, this time
is expressed by the formula τ = d2

sρ
0
s/(18µ). The density of coal is ρ0

s = 1700 kg/m3, the particle diameter is
ds = 5 · 10−5 m, and the water viscosity is µ = 1.42 · 10−3 Pa · sec (at T = 280 K). Then, the relaxation time of
coal particles is τ ≈ 1.7 · 10−4 sec. With due allowance for the smallness of τ , we can omit all terms that contain
the relaxation time raised to the second power in formula (2).

Thus, for sedimentation of coal particles in water, the motion of particles smaller than 50 µm in diameter
can be assumed stationary, and the particle velocity can be calculated by the formula us = u + τF − τ du/dt.
Note that the acceleration of the carrier liquid in sedimentation reservoirs is normally negligible as compared to the
acceleration of gravity. Hence, the particle velocity can be estimated by the formula

us = u + uss,

where uss = τg(1− ρ0
l /ρ

0
s) is the equilibrium sedimentation velocity of particles.

Apart from the estimate of the relaxation time, one has to check whether inequalities (6) and (8) are satisfied.
In these inequalities, the steady sedimentation velocity δV = uss = 1.9 · 10−4 m/sec plays the role of the particle-
velocity lag scale. The flow-velocity scale can be estimated from the flow rate of the suspension flow through the
treatment plant (0.16 m3/h). The mean flow velocity is u = 4.4 · 10−5 m/sec. Then, the flow Reynolds number
between the shutter plates is Re ≈ 3. By performing necessary calculations, we learn that inequalities (6) and (8)
result in the relations 1.3 · 10−2 � 1 and 0.013 � 0.32, respectively. Thus, for the flow between the shutter plates
with the given flow rate of the suspension, inequalities (6) and (8) hold throughout the whole solution domain. The
smallness of the relaxation time of particles and validity of the indicated relations enable one to use system (9) for
predicting the motion of the suspension of particles in water. Unlike the starting system, system (9) contains no
small parameters at the derivatives (is not a “stiff” system), which, in the case of fine particles, allows a considerable
reduction of the computing time.

In Cartesian coordinates, system (9), expressed in terms of the variables “vorticity–stream function,” which
describes sedimentation of fine particles with allowance for the backward influence of particles on the liquid flow,
can be written as

dζ

dt
= g

1− ρ0
s/ρ

0
l

ρ0
l

∂ρs

∂x
+ v∆ζ, ∆ψ = ζ,

where ζ = ∂u/∂z−∂v/∂x is the vorticity and ψ is the stream function given by the laws ∂ψ/∂z = u and ∂ψ/∂x = −v.
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Fig. 2. Streamlines for particle concentrations of 1 (a) and 5 kg/m3 (b).
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Fig. 3. Particle trajectories.

Fig. 4. Granulometric composition of deposited control particles: (a) calculations; (b) experiment.

The function ρs obeys the transport equation for the substance:
∂ρs

∂t
+
∂ (ρsus)
∂x

+
∂ (ρsvs)
∂z

= 0.

The transport equations for the vortex and for the solid fraction were solved by the MacCormack finite-
difference scheme with artificial viscosity introduced into the algorithm [6]. The equation for the stream function
was solved by the explicit finite-difference upper-relaxation method. The results were verified by comparing the
fluxes of incoming and outgoing particles, with the outgoing flux accessed as the sum of particles deposited in the
cell and particles leaving the channel. On the 10 × 100 computational grid, the difference between the fluxes was
within 10%.

Figure 2 shows the streamlines between the sedimentation-reservoir shutters for different particle concen-
trations. The heavier two-phase mixture tends to spread over the bottom of the sedimentation reservoir. Figure 3
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shows the boundary trajectories of particles moving between the shutters. The upper, middle, and lower trajectories
refer to 7-µm, 15-µm, and 30-µm particles, respectively. Near the shutter plates, the particles start falling under
the action of the gravity force because the velocity of the viscous carrier flow here tends to zero.

The efficiency of sedimentation reservoirs is characterized by the minimum size of trapped particles. There-
fore, the primary focus is to be made on the granulometric composition of particles deposited onto the upper part
of the shutter plates (10% of their total surface area). The predicted data for particles deposited onto the upper
part of the shutter plates are plotted in Fig. 4a. A comparison of the predicted and experimental data (Fig. 4b)
demonstrates good qualitative agreement between them.

Conclusions. The mathematical model developed predicts sedimentation of the coarse solid fraction in the
liquid rather adequately and can be used to design waste-disposal plants in coal and ore mining and processing and
to design various-purpose thin-layer thickeners.
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